
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 311 (2008) 1075–1099

www.elsevier.com/locate/jsvi
Response-only method for damage detection
of beam-like structures using high accuracy frequencies

with auxiliary mass spatial probing

Shuncong Zhonga, S. Olutunde Oyadijia,�, Kang Dingb

aDynamics and Aeroelasticity Research Group, School of Mechanical, Aerospace and Civil Engineering,

The University of Manchester, Manchester M13 9PL, UK
bFaculty of Automobile Engineering, South China University of Technology, PR China

Received 16 October 2006; received in revised form 28 September 2007; accepted 2 October 2007

Available online 21 December 2007
Abstract

This paper proposes a new approach based on auxiliary mass spatial probing using spectral centre correction method

(SCCM), to provide a simple solution for damage detection by just using the response time history of beam-like structures.

The natural frequencies of a damaged beam with a traversing auxiliary mass change due to change in the inertia of the

beam as the auxiliary mass is traversed along the beam, as well as the point-to-point variations in the flexibility of the

beam. Therefore the auxiliary mass can enhance the effects of the crack on the dynamics of the beam and, therefore,

facilitate the identification and location of damage in the beam. That is, the auxiliary mass can be used to probe the

dynamic characteristic of the beam by traversing the mass from one end of the beam to the other. However, it is impossible

to obtain accurate modal frequencies by the direct operation of the fast Fourier transform (FFT) of the response data of

the structure because the frequency spectrum can be only calculated from limited sampled time data which results in the

well-known leakage effect. SCCM is identical to the energy centrobaric correction method (ECCM) which is a practical

and effective method used in rotating mechanical fault diagnosis and which resolves the shortcoming of FFT and can

provide high accuracy estimate of frequency, amplitude and phase. In the present work, the modal responses of damaged

simply supported beams with auxiliary mass are computed using the finite element method (FEM). The graphical plots of

the natural frequencies calculated by SCCM versus axial location of auxiliary mass are obtained. However, it is difficult to

locate the crack directly from the curve of natural frequencies. A simple and fast method, the derivatives of natural

frequency curve, is proposed in the paper which can provide crack information for damage detection of beam-like

structures. The efficiency and practicability of the proposed method is illustrated via numerical simulation. For real cases,

experimental noise is expected to corrupt the response data and, ultimately, the natural frequencies of beam-like structures.

Therefore, the response data with a normally distributed random noise is also studied. Also, the effects of crack depth,

auxiliary mass and damping ratios on the proposed method are investigated. From the simulated results, the efficiency and

robustness of the proposed method is demonstrated. The results show that the proposed method has low computational

cost and high precision.
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1. Introduction

The initiation and propagation of cracks in components and structures can result in catastrophic failure.
Therefore, early crack identification plays a vital role in the safe operation of plants, machinery and high
integrity structures by providing timely damage assessment and, therefore, maintains high performance and
reliability for these systems. System identification, which is an important tool in crack identification, has
attracted the attention of the scientific community and there has been a lot of research in the last two decades.
The presence of a crack in a component or structure leads to a reduction in the stiffness and to an increase in
the damping of the component or structure. The reduction in stiffness results in decreases in the natural
frequencies and modifications of the mode shapes of the component or structure. Many researchers have used
one or more of these characteristics to detect and locate cracks.

Usually, the determination of the dynamic characteristics of cracked structures outlined above, namely:
stiffness, damping, natural frequencies (eigenvalues) and mode shapes (eigenvectors), require full experimental
modal survey. This requires the excitation of the structure with a known single force or a known pattern of
multiple forces and the measurements of the corresponding responses at various locations on the structure.
From these input and output measurement, frequency response functions are determined from which the
dynamic characteristics are determined using modal analysis techniques. However, there are real structures
such as buildings, bridges, large aircraft, ships and submarines for which it is difficult or impractical to provide
an external source of known force excitation. For such systems, it is more practical to measure response only.

Identification and location of cracks from response-only (output-only) measurements has received some
attention in the past few years. Duan et al. [1] proposed an approach to assemble a proportional flexibility
matrix (PFM) from arbitrarily scaled mode shapes and modal frequencies with response-only data. They
integrated the proposed PFMs and flexibility-based damage detection methods for damage localizations using
response-only data. This method was applied to a seven degrees of freedom (dofs) mass-spring system and a
53-dof truss structure. Parloo et al. [2] used the sensitivity-based damage assessment techniques using
response-only data to identify structural damage defined as local changes in mass or stiffness. Then they
proposed another method which is based on the interpretation of shifts in natural frequencies between a
reference (undamaged) and a damaged condition [3]. Both of these two methods require the natural
frequencies of the structure in its reference and damaged conditions as well as the normalized mode shape
estimates from the structure in its reference condition [3]. Lu and Gao [4] presented a new method for damage
diagnosis using time-series analysis of vibration signals. The method is based on linear dynamic equations
and is formulated as a novel form of the auto-regressive with exogenous (ARX) model with acceleration
response-only signals. Also, the standard deviation of the residual error, which is the difference between the
measured signals from any actual state of the system and the predicted signals from the ARX model
established from a reference (undamaged) state, was found to be a damage-sensitive feature. A damage
localization and severity methodology using time-domain response data was presented by Choi and Stubbs [5]
using time-domain response-only data. The measured response data in the time domain is spatially expanded
over the structure and the mean strain energy for a specified time interval is obtained for each element of the
structure. The mean strain energy for each element is, in turn, used to build a damage index that represented
the ratio of the stiffness parameter of the pre-damaged (undamaged) to post-damaged (damaged) structure.
The damage indices were used to identify possible locations and corresponding severities of damage in
the structure.

All the response-only methods in Refs. [2–5] need the parameter of the undamaged state of the structures.
However, most suspected damaged civil structures were constructed several decades ago, and the parameter of
the structures in the intact state is not available. This is the shortcoming of the existing response-only methods
in Refs. [2–5] for damage detection. The method proposed in Ref. [1] is limited by the computational
complexity which makes it unusable for real-time online health monitoring of structures. Also, there are errors
associated with the fast Fourier transform (FFT) of the measured time data into the frequency domain. The
method proposed in this paper overcomes these difficulties.

The identification of cracks based on measured vibration frequencies has been investigated by many authors
[6–10]. Narkis [6] reported that the variation of the first two natural frequencies is sufficient for identification
of the crack location of a cracked simply supported uniform beam. A damage location assurance criterion was
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calculated by Messina et al. [7,8] and was used to identify single defect. The approach was later extended to
identify multiple damage sites on the basis of changes in the natural frequencies. Salawu [9] presented a more
comprehensive survey in which he reviewed the numerous technical literatures available on crack detection
based on the change in natural frequencies. Lee and Chung [10] employed the natural frequencies of a one-
dimensional beam-type structure to identify the location and size of a crack. In fact, natural frequencies have
been a favoured damage indicator because they can be easily measured and are less contaminated by
experimental noise. However, the use of natural frequency changes for crack detection has a major drawback
which is that significant cracks may cause only small changes in natural frequencies. Such small changes may
go undetected due to measurements errors [11], and errors associated with the transformation of measured
time history responses of the structures being investigated, to the frequency domain using the FFT procedure.
Generally, it would be necessary for a natural frequency to change by about 5% for damage to be detected
with confidence [9].

Due to signal leakage effects caused by using a finite number of time samples, the estimate of amplitude,
phase and frequency from the FFT of the measured time histories are normally different from the real ones
even in the absence of noise. Applying windowing functions to sampled time signal is a common method in
frequency spectrum estimation to minimize the effect of leakage. However, theoretically, the maximum
relative error of the amplitude estimate will be 36.4%, 18.1% and 36.4%, respectively, even when Rectangle,
Hamming and Hanning windows are employed to minimize leakage [12].

The maximum relative error of the frequency estimate will be 70.5Df, where Df is frequency resolution
which is equal to sampling rate divided by the number of points of the FFT. Also, the maximum relative error
of the phase estimate will be 7901 regardless of the windowing function used [12]. To obtain high-accuracy
estimates, several techniques have been proposed to overcome the leakage problem. Huang [13] analysed a
windowed signal with Fourier transform and investigated the leakage-induced phase error. He presented an
approach to correct leakage in a discrete frequency signal to obtain accurate phase information. Ding and Xie
[14] used a three-point convolution correction method to get accurate amplitude of the spectrum. Ming and
Kang [15] proposed a new method based on the barycentre of spectral lines in the main lobe to correct the
spectral peak value of the spectrum. A new method, based on phase difference between the corresponding
discrete spectral lines of the frequency spectrum of two continuous time-domain signals, was proposed by
Kang et al. [16].

A comparative study of three existing phase difference correction methods on discrete spectrum was carried
out by Ding et al. [17], and the phase difference method proposed in Ref. [16] was recommended for
engineering applications. Also, a universal correction formula of frequency, amplitude and phase, based on
phase difference of discrete spectrum was investigated by Ding and Zhong [18]. This formula is much more
robust than the three-point convolution correction method for a discrete spectrum in Ref. [14] which can only
correct the amplitude but is unable to correct frequency and phase. Ding and Jiang [19] found the property
that the energy centroid of discrete spectrum of windowing functions used frequently (i.e. Hanning and
Rectangular windows, etc.), is near the origin of coordinate. Therefore they proposed a new correction
method based on energy centrobaric correction method (ECCM) to get high-accuracy estimate of frequency,
phase and amplitude. Zhu et al. [20] employed Parseval’s theorem and derived two equalities regarding the line
spectrum. Based on this, they proposed a new approach for amplitude correction using the average of multiple
points in discrete Fourier transform sequence.

There are the following five novelties associated with the proposed method in this paper, namely: (1) a
response-only (output only) damaged state method. It only uses the response time history of damaged beam-
like structures and does not need the parameter of the undamaged state of the structures (unlike the other
response-only methods in Refs. [2–5]). Also, this method has low computational cost (unlike the response-only
method in Ref. [1]) and high precision, and it is, therefore, suitable for online health monitoring of beam-like
structures. (2) Moving auxiliary mass for spatial probing of the dynamics of a damaged beam. The natural
frequencies of a damaged beam with a traversing auxiliary mass change due to the spatial location of the
auxiliary mass along the beam. That is, the auxiliary mass can be used to probe the dynamic characteristics of
the beam by traversing the mass from one end of the beam to the other. In real applications, for example in the
assessment of a damaged bridge, a motor vehicle can be used as a moving mass and as a vibration exciter.
(3) Applications of a spectral centre correction method (SCCM) for correction of frequency spectrum
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obtained from the FFT of the response-only time data. SCCM is identical to ECCM which is a practical and
effective method used currently in rotating mechanical fault diagnosis, which overcomes the shortcoming of
FFT and can provide highly accurate estimates of frequency, amplitude and phase. This is the first paper to
apply the ECCM in the field of damage detection of beam-like structures. In this paper, the appellation SCCM
is preferred to ECCM as it is more descriptive of the spectral correction as will become apparent subsequently.
(4) Use of the derivatives of natural frequency curve for crack identification. Some researches used derivatives
of mode shapes as the damage indicator [22,23]. However, natural frequencies have been an appealing damage
indicator because they can be easily measured and are less contaminated by experimental noise than mode
shapes [11]. Therefore, it is proposed in this paper to use the derivatives of natural frequency curves to provide
fast and accurate crack indicator instead of the derivatives of mode shapes which are more contaminated by
noise. (5) The use of very basic testing instrumentation. Only a motion sensor, preferably a wireless sensor,
connected to a Laptop-based data acquisition system is required for diagnostic tests on a large structure such
as a bridge. The excitation and moving mass on the bridge is due to a vehicle driven along the bridge.

It should be noted here that the proposed method for crack identification uses the derivatives of natural
frequency curves of beam-like structure with a traversing auxiliary mass. This method, in fact, is an
application in structural damage detection of the derivatives (sometimes called ‘sensitivities’) of eigenvalues
with respect to design parameters (or updating parameters). Methods for computing the derivatives of
eigenvalues and eigenvectors have been studied by many researchers in the past 30 years [24–32]. The
importance of obtaining sensitivities for eigenvalue problems stems from the fact that partial derivatives with
respect to design parameters are extremely important for efficient design modifications under given situations,
for gaining insight into the reasons for discrepancies between structural analyses and dynamic tests due to
design parameters change, and for indicating system model changes that will improve correlations between
analyses and tests [31].

For undamped structural eigenvalue problem, expressions were derived for the first derivatives of the
eigenvalues by Wittrick [24]. Fox and Kapoor [25] derived expressions for rates of change of eigenvalues and
eigenvector to facilitate computerized design of complex structures. Friswell [27] extended Nelson’s method
[26] for the calculation of the first-order eigenvector derivatives, or sensitivities, to the second- and higher-
order eigenvector derivatives. Friswell and Mottershead [28] integrated the works by Wittrick [24], Fox and
Kapoor [25], and Nelson [26] in the calculation of sensitivities. A simultaneous interaction scheme of Andrew
[29] was analysed and extended, and developed into an effective algorithm for numerical computations of
partial derivatives of several eigenvalues and eigenvectors of a matrix which depends on a number of
parameters [30]. Adhikari [31] presented rates of change of eigenvalues and eigenvectors of a damped linear
discrete dynamic system with respect to the system parameters. The usefulness of the derived expressions was
demonstrated by considering an example of non-proportionally damped two-dof system. Choi et al. [32]
presented a simple algorithm for the calculation of first-, second- and higher-order derivatives of eigenvalues
and eigenvectors of a damped system with repeated eigenvalues. The proposed method found derivatives of
eigenvalues and eigenvectors simultaneously from one augmented equation by solving a stable linear algebraic
equation.

The design parameters (or updating parameters) with respect to which the derivatives of eigenvalues
and eigenvectors have been investigated in the literature include the root diameter of a cylindrical
cantilever beam [25], the mean diameter of each tubular members of a pin-connected planar frame [25], the
stiffness, breadth and depth of a right angled beam joint [28], the damping of a two-dof system [31], the
width of a proportionally damped cantilever beam [32], and the spring stiffness of a five-dof non-
proportionally damped mechanical system [32], etc. In this paper, the updating parameter of a beam with an
auxiliary mass is the location of the mass along the beam. This kind of updating parameter cannot be found in
any literature that have been published. The derivatives of eigenvalues (frequencies) with respect to the
locations of an auxiliary mass along a beam have been investigated in this paper for beam-like structure
damage detection.

In this paper, the response time histories of damaged simply supported beams with traversing auxiliary mass
are computed at various points along its length using the finite element method (FEM). The SCCM is used to
calculate highly accurate natural frequencies of the beams with auxiliary mass. The graphical plots of the
natural frequencies calculated by SCCM versus axial location of the auxiliary mass are obtained. However, it
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is difficult to locate the crack directly from the curves of natural frequencies. A simple and fast method, which
is based on the derivatives of the curves of natural frequencies, is proposed. The method provides
characteristics which enable detection in beam-like structures. The efficiency and practicability of the
proposed method is illustrated via numerical simulation. For real cases, experimental noise is expected to
corrupt the response data and, hence, the natural frequencies of the beams. Therefore, response data with a
normally distributed random noise is also investigated. Also, the effects of crack depth, auxiliary mass and
damping ratios on the proposed method are investigated. From the simulated results, the efficiency and
robustness of the proposed method is demonstrated. The proposed method has low computational cost
and high precision. Therefore, it has great potential in crack detection of beam-like structures.
2. Auxiliary mass spatial probing

In Ref. [9], it stated that it would be necessary for a natural frequency to change by about 5% for damage to
be detected with confidence. Also, the authors of this paper found by using finite element analysis that for a
damaged simply supported beam without an auxiliary mass, the natural frequency change (comparing with the
frequency of an intact beam) is about 5.0% for the first mode of bending vibration when the crack ratio is
greater than 50%. That is, a crack whose crack ratio, which is the ratio of the depth of the crack to the depth
of the beam, is greater than 50% can be detected with confidence using the natural frequency change of a
structure. Therefore, it is difficult to make damage detection directly using the natural frequencies of a
damaged beam itself. In the paper, an auxiliary mass is added to a damaged beam to magnify the crack effect
and, hence, to facilitate damage detection of the beam. The detail of this approach is described as follows.

A simply supported beam carrying an auxiliary mass with a single-sided transverse crack whose depth is Hc,
is shown in Fig. 1. The crack is located at position x ¼ lc from the left support of the beam. The width, depth
and length of the beam are, respectively, B, H and L, while m is the auxiliary mass which is located at position
x ¼ lm.

The natural frequencies of a damaged beam with a traversing auxiliary mass change due to the spatial
location of the auxiliary mass along the beam. This is because the flexibility and inertia of the beam depend on
the axial location of the auxiliary mass. Therefore the auxiliary mass can amplify crack effects, especially when
located close to a crack. That is, the auxiliary mass can be used to probe the dynamic characteristics of the
beam by traversing the mass from one end of the beam to the other.

As shown in Fig. 2, the first two natural frequency curves of a cracked beam with an auxiliary mass
traversing along the length of the beam are single smooth curves. The beam has a cross-sectional area of
0.100� 0.025m2 and its length is 2.4m. A crack of depth hc ¼ 2.5mm is located at lc ¼ 0.4m. Hence, it is hard
to detect cracks in simply supported beams by using data directly from the graphical plot of natural frequency
versus axial location of auxiliary mass. The object of this work is to propose a simple approach based on the
derivatives of the curve of the corrected high-accuracy natural frequencies, to provide characteristics which
will enable detection in beam-like structures.
m

lc

x

L

A

A

A - A

B

H

lm

hc

Fig. 1. Model of a cracked simply supported beam with auxiliary mass.
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Fig. 2. The first two natural frequency curves of the cracked aluminium alloy beam (L ¼ 2.4m, H ¼ 25mm, B ¼ 100mm, hc ¼ 2.5mm,

lc ¼ 0.4m, beam mass mb ¼ 16.2 kg) with an auxiliary mass traversing along the beam (m ¼ 2 kg): (a) first natural frequency curve and (b)

second natural frequency curve.
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3. Spectral centre correction method

3.1. Shortcoming of FFT

Due to the spectrum leakage effect caused by a finite number of processed samples, the estimated frequency
spectrum resulting from the FFT of the response time data is normally different from the actual spectrum even
in the absence of noise. For instance, as mentioned in the Introduction, the maximum relative error of the
amplitude estimate will be 36.4%, 18.1% and 36.4%, respectively, even when Rectangle, Hamming and
Hanning windows are employed in order to minimize leakage [12]. The maximum relative error of the
frequency estimate will be 70.5Df, where Df is the frequency resolution which is equal to the sampling rate
divided by the number of points of the FFT. Also, the maximum relative error of the phase estimate will be
7901 regardless of the windowing function used [12]. It is well known that there is no spectral leakage in the
FFT of a finite synchronously sampled periodic signal sequence, in which an integer multiple of periods is
measured. Unfortunately, in practical situations, it is often difficult for the sampling procedure to be exactly
synchronized with periodic signals [33]. SCCM is a very accurate and reliable method to obtain high-accuracy
estimates of frequency, phase and amplitude of the signals.

Furthermore, in spectrum analysis, the spectral lines of the frequency spectrum obtained from the FFT of
the response time history is discrete, as shown in Fig. 3. The spectral lines are the re-sampled results of the
complex convolution of the signal spectrum and the window function spectrum with the equal frequency
interval of Df. If the frequency of the signal coincides with a spectral line, the frequency, amplitude and phase
angle of the signal are accurate. However, in real applications, the frequency of the signal usually lies between
two spectral lines and does not overlap the spectrum peak (i.e. point A in Fig. 3). Therefore, the frequency,
amplitude and phase angle of the signal are not accurate. For example, the error of the frequency of the main
spectral line shown in Fig. 3 is fe, while the error of the corresponding spectral amplitude is Ae.

3.2. Theory of SCCM

This section presents a brief background on the SCCM utilized in this paper. The SCCM is identical to the
ECCM proposed by Ding et al. [19,21]. More facts may be found in Refs. [19,21] which are not readily
accessible as they are written in Chinese. It should be noted that this paper is the first presentation of the
ECCM in English. In this paper, the method is referred to as SCCM as it is more descriptive of the techniques.



ARTICLE IN PRESS

Fig. 3. Discrete spectral lines re-sampled in frequency domain.
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The term ECCM is a direct translation of the name of the method in Mandarin. The energy property of the
power spectrum of the Hanning window is discussed as follows. For a time history data set of size N, the
Hanning window is defined as [15]

W ðnÞ ¼ 0:5� 0:5 cosð2pn=NÞ, (1)

where n ¼ 0,1,2,y, N�1 and W(n) is the amplitude of the Hanning window for the nth data. The spectrum
function of Hanning window is [15]

W ðonÞ ¼ aDðonÞ þ
1� a

2
D on �

2p
N

� �
þD on þ

2p
N

� �� �� �
e�iðNon=2Þ, (2)

where

DðonÞ ¼ sinðNon=2Þ= sinðon=2Þ e
ion=2, (3)

on ¼ kDon, (4)

Don ¼
2p
N

, (5)

a ¼ 0:5 (6)

and Don is normalized frequency resolution, k is the spectral line number.
Generally, Nb1 so that 1/N-0. Therefore,

sin
on

2

� 	
¼ sin

kp
N

� �
�

kp
N

. (7)

From Eq. (2), the three terms in parentheses have a phase difference of 2p/N. Neglecting the phase
difference (because Nb1) and referring to Eq. (7), the main lobe function (modulus function) Mf of Hanning
window, which is the sum of the modulus function of these three terms, can be obtained as

Mf ¼ a
sin ðpkÞ

pk
þ

1� a

2

sin pðk � 1Þ

pðk � 1Þ
þ

sin pðk þ 1Þ

pðk þ 1Þ

� �

¼
sin ðpkÞ

pk

aþ ð1� 2aÞk2

1� k2
. ð8Þ
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When k ¼ 0, Mf-a. When k-71, according to L’Hospital’s rule, the following limiting value is obtained:

lim
k!�1

sin ðpkÞ

pk

aþ ð1� 2aÞk2

1� k2
¼ lim

k!�1

sin ðpkÞ½aþ ð1� 2aÞk2
�


 �0
pkð1� k2

Þ
� 0 ¼

1� a

2
. (9)

Therefore, when k-71, Mf ! ð1� aÞ=2. Also, when k ¼72,74,y, Mf ¼ 0.
When the windowing function is Hanning window, a ¼ 0.5. Therefore, the main lobe function (modulus

function) Mf of Hanning window is

Mf ¼
sinðpkÞ

2pkð1� k2
Þ
. (10)

The main lobe function of Hanning window is shown in Fig. 4(a). Eq. (10) and Fig. 4(a) show that the width
of the main lobe is equal to the frequency interval between four spectral lines. That is, there exists four spectral
lines within the main lobe.

In fact, when k ¼ 0,71,72,y, the centre of the main lobe coincides with one spectral line. But when the
spectral line does not overlap the centre of the main lobe, there are errors in the estimates of the frequency,
Fig. 4. Hanning window: (a) main lobe function of Hanning window; (b) power spectrum of Hanning window when the centrobaric

coordinate of main lobe is zero; and (c) power spectrum of Hanning window when the centrobaric coordinate of main lobe is on0.
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amplitude and phase angle. The importance of the SCCM is in calculating the centre frequency of the main
lobe from the spectral lines resulting from the FFT of the time history. This enables the derivation of accurate
estimates of frequency, amplitude and phase angle of the time-domain signal.

For the case that the spectral line does not overlap the centre of the main lobe, k is replaced by don, and
Eq. (10) can be expressed as

Mf ¼
sinðpdonÞ

2pdonð1� do2
nÞ
, (11)

where don is the normalized frequency correction value which is shown in Fig. 4(b).
In fact,

ona ¼ on þ don, (12)

where ona is the accurate normalized frequency of the time-domain signal.
Now, from Eq. (11), the power spectrum of Hanning window can be obtained as

GwpðdonÞ ¼
sin2ðpdonÞ

4p2do2
nð1� do2

nÞ
2
. (13)

From Fig. 4(b) and Eq. (13), the power spectrum of Hanning window, for a given value don and
n ¼ 0,1,2,y,N, can be obtained as

Xn

i¼�n

Gwpðdon þ iÞðdon þ iÞ

¼
Xn

i¼�n

sin2½pðdon þ iÞ�

4p2ðdon þ iÞ2½1� ðdon þ iÞ2�2
ðoþ iÞ

¼
�sin2ðpdonÞ

16p2ðnþ donÞ
2
ðnþ don þ 1Þ2

þ
sin2ðpdonÞ

16p2ðn� donÞ
2
ðn� don þ 1Þ2

. ð14Þ

Therefore,

Xn

i¼�n

Gwpðdon þ iÞðdon þ iÞ ¼ 0, (15)

when n ¼N.
Eq. (15) shows that the energy centrobaric of the power spectrum of Hanning window is zero. That is, it

approaches the origin of coordinates as the number of spectral lines used to represent the signal approaches
infinity.

If the centrobaric coordinate of the main lobe is shifted to on0 and the power spectrum is multiplied by A,
the power spectrum shown in Fig. 4(c) will be

Y ðoÞ ¼ A
sin2½pðdon � on0Þ�

4p2ðdon � on0Þ
2
½1� ðdon � on0Þ

2
�2
, (16)

where on0 and A are, respectively, the normalized frequency and amplitude of the sampled signal. From Eqs.
(15) and (16), the following equation can be obtained:

Xn

i¼�n

Y iðdon � on0 þ iÞ ¼ 0, (17)

where Y0 is the largest peak value of spectral lines and Yi is the peak value of the ith spectral line. Therefore,
the centrobaric coordinate of the main lobe is

on0 ¼

Pn
i¼�nY iðdon þ iÞPn

i¼�nY i

. (18)
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Eq. (18) is the accurate estimate formula of frequency for single sinusoidal signal when Hanning window
is used.

If fs is sampling rate, N is the number of points of the FFT, m is the number of spectral lines of the discrete
spectrum, the accurate estimate of the frequency of the sampled signal, o0, can be obtained as

o0 ¼

Pn
i¼�nY iðmþ iÞPn

i¼�nY i

f s=N. (19)

According to Parseval’s theorem, namely, that the sum (or integral) of the square of a signal is equal to the
sum (or integral) of the square of its transform, the accurate estimate formula of amplitude can be obtained as

A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kt

Xn

i¼�n

Y i

s
, (20)

where Kt is a coefficient due to the added windowing function, which can be calculated by the following
equation:

Kt ¼

R T

0 x2ðtÞdtR T

0 jwðtÞx
2ðtÞj2 dt

, (21)

where x(t) and w(t) are, respectively, the analysed signal and the added window.
From Eq. (19), Do, the frequency correction value, can be expressed as

Do ¼ ðo0 �mf s=NÞ=ðf s=NÞ. (22)

Therefore, the correction of the phase is [15]

Df ¼ �Dop. (23)

Assuming that the real and imaginary part of the FFT of the signal are, respectively, Rk and Ik, the accurate
estimate formula of phase can be obtained as

f ¼ tg�1
Rk

Ik

� �
þ Df. (24)

The power spectrum of Hanning window shown in Fig. 4(a) shows only the main lobe; the side lobes are not
visible because they are very small. Therefore, in real applications, accurate frequency, amplitude and phase
can be calculated by using the few spectral lines which are associated with the main lobe. In fact, only three
spectral lines (n ¼ 1) need to be used for computing highly accurate estimates of amplitude. This results in the
three-point convolution correction method [14]. Theoretically, using more spectral lines will result in a more
accurate estimate of frequency, amplitude and phase. However, different frequency components will interfere
with each other. Therefore, only few spectral lines need to be used for spectrum correction, the number of
spectral lines depends on how close the frequency components are, the degree of accuracy of the correction
desired, and the desired speed of the computation.

3.3. Numerical evaluation of SCCM

In order to illustrate spectral correction using the SCCM, the following multi-frequency signal was used to
generate time data:

yðtÞ ¼ cosð2pf 1tþ f1Þ þ cosð2pf 2tþ f2Þ þ cosð2pf 3tþ f3Þ þ cosð2pf 4tþ f4Þ þ rðtÞ, (25)

where [f1 f2 f3 f4]
t
¼ [10.3 40.5 87.6 148.2]t, ½f1 f2 f3 f4�

t ¼ p=180½10 20 30 40�t and r(t) was a normally
distributed random noise. Eq. (25) represented a complex periodic signal which consists of four sinusoidal
components of frequencies 10.3, 40.5, 87.6, and 148.2Hz. These frequencies were chosen to ensure that they do
not coincide with the spectral frequencies obtained from the FFT of the signal. The corresponding phase
angles of the four sinusoidal components of the complex periodic signal are: 101, 201, 301, and 401. Using a
sampling rate of 1000Hz, four data sets consisting of 512, 1024, 2048 and 4096 data points were generated
from Eq. (25). By means of the FFT procedure and the Hanning window, four frequency spectrums were
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produced from the four time-domain data sets. Then, the SCCM was applied to the frequency spectrums in
order to obtain accurate estimates of the frequencies. Table 1 shows a comparison of frequencies calculated by
FFT and SCCM when n ¼ 5. That is, 11 spectral lines were used for frequency estimate. Two different levels
of noise (0% and 20% of amplitude of the signal) were investigated. It is noted here that the normally
distributed random noise whose amplitude is 0% or 20% of the amplitude of the noise-free time data is added
to the noise-free time data. From Table 1, it is seen that the results of frequency correction are highly accurate
even if additive noise is as high as 20%. Taking the frequency component 10.3Hz as an example, when a noise
of 20% was added and the number of processed time data points is 512, the frequency calculated by FFT is
9.765625Hz and its relative error is �51.88107%, whereas, the frequency calculated by SCCM is 10.300045Hz
and its relative error is 0.00437% (where % denotes per 1000). When the number of processed time data is
4096, the relative error of the frequency component 10.3Hz calculated by FFT is �0.447515%, whereas, that
of the frequency component 10.3Hz calculated by SCCM is 0.004709%. An error of 0.4% in the frequency
estimation by FFT is very significant in structural damage detection, especially, for small crack detection.
Taking an example, the authors found that for a damaged simply supported beam, the natural frequency
Table 1

Comparison of frequencies calculated by FFT and SCCM, in which Hanning window was used, sampling rate is 1000Hz, number of

processed time data is N, and 11 spectral lines are used (n ¼ 5)

Simulation frequency FFT result SCCM result

Noise (%) Value (Hz) Value (Hz) Relative error (%) Value (Hz) Relative error (%)

N ¼ 512 0 10.300000 9.765625 �51.881068 10.300045 0.004369

40.500000 41.015625 12.731481 40.500005 0.000123

87.600000 87.890625 3.317637 87.599996 �0.000046

148.20000 148.43750 1.602564 148.20000 �0.000007

20 10.300000 9.765625 �51.881068 10.311881 1.153495

40.500000 41.015625 12.731481 40.489574 �0.257432

87.600000 87.890625 3.317637 87.599945 �0.000628

148.20000 148.43750 1.602564 148.20206 0.013920

N ¼ 1024 0 10.300000 10.742188 42.930874 10.300010 0.000971

40.500000 40.039063 �11.381160 40.499986 �0.000346

87.600000 87.890625 3.317637 87.600005 0.000057

148.20000 148.43750 1.602564 148.20000 0.000020

20 10.300000 10.742188 42.930874 10.298328 �0.162330

40.500000 40.039063 �11.381160 40.497920 �0.051358

87.600000 87.890625 3.317637 87.599169 �0.009486

148.20000 148.43750 1.602564 148.20010 0.000648

N ¼ 2048 0 10.300000 10.253906 �4.475146 10.299999 �0.000097

40.500000 40.527344 0.675160 40.500000 0.000000

87.600000 87.402344 �2.256347 87.599995 �0.000057

148.20000 148.43750 1.602564 148.20000 0.000047

20 10.300000 10.253906 �4.475146 10.298970 �0.100000

40.500000 40.527344 0.675160 40.499235 �0.018889

87.600000 87.402344 �2.256347 87.599467 �0.006084

148.20000 148.43750 1.602564 148.19864 �0.009150

N ¼ 4096 0 10.300000 10.253906 �4.475146 10.300000 0.000000

40.500000 40.527344 0.675160 40.500000 0.000000

87.600000 87.646484 0.530639 87.600000 0.000000

148.20000 148.19336 �0.044811 148.200000 0.000000

20 10.300000 10.253906 �4.475146 10.300485 0.047087

40.500000 40.527344 0.675160 40.500279 0.006889

87.600000 87.646484 0.530639 87.599740 �0.002968

148.20000 148.19336 �0.044811 148.20071 0.004811

Note: % denotes per 100, % denotes per 1000.
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Fig. 5. Comparisons of the relative errors of frequency estimate by FFT and SCCM using different data points and spectral lines: (a) error

using different number of data points (FFT); (b) error using different number of data points (SCCM); and (c) error using different SCCM

spectral lines: ( ) no noise and ( ) 20% noise. (Note: For FFT, relative error is the same with or without added noise.)
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change (comparing with the frequency of an intact beam) is about 0.4% for the first mode of bending
vibration when the crack ratio is 30%. Therefore, high accuracy frequency estimation by SCCM has great
potential in the field of structural damage detection. Figs. 5(a) and (b) show the relation between the relative
errors and the number of processed time data points. It can be seen from Table 1 and Figs. 5(a) and (b) that
the accuracy of frequency estimate increases when the number of points increases.

The relation between spectral lines used for frequency estimate and the accuracy of frequency estimate was
investigated. Figs. 5(c) show the relation between the relative errors and the number of spectral lines used.
Table 2 shows the results obtained using different spectral lines (n ¼ 1, 2, 5, 15) in the SCCM procedure. From
the table, it can be deduced that the accuracy of frequency estimate increases when the spectral lines Ns

increase from 3 to 11, that is, n increases from 1 to 5 since Ns ¼ 2n+1. However, it can be seen from Fig. 5(c),
when spectral lines increase from 21 (n ¼ 10), to 31 (n ¼ 15) and to 41 (n ¼ 20), the accuracy of frequency
estimates decreases. The reason is that the frequency components will couple when more spectral lines
are used.

3.4. Evaluation of SCCM in beam-like structures

In this section, a simply supported beam with auxiliary mass located at various axial positions is studied
using the ABAQUS finite element code. The beam models are made of aluminium of cross-sectional area
100� 25mm2 with a length of 2400mm. Finite elements of type 20node 3D brick elements, which are denoted
in the ABAQUS FE package as C3D20R, are used. The beam models have the following material properties:
Young’s modulus E ¼ 70GPa, Density r ¼ 2700 kg/m3, Poisson ratio v ¼ 0.34. Two sets of data are
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Table 2

Comparison of frequencies calculated by FFT and SCCM, in which Hanning window was used, sampling rate is 1000Hz, number of

processed time data is 2048, and different spectral lines are used (n ¼ 1, 2, 5, 15)

Simulation frequency FFT result SCCM result

Noise (%) Value (Hz) Value (Hz) Relative error (%) Value (Hz) Relative error (%)

n ¼ 1 0 10.300000 10.253906 �4.475146 10.299898 �0.009903

40.500000 40.527344 0.675160 40.500021 0.000519

87.600000 87.402344 �2.256347 87.592222 �0.088790

148.20000 148.43750 1.602564 148.21326 0.089494

20 10.300000 10.253906 �4.475146 10.298932 �0.103689

40.500000 40.527344 0.675160 40.499217 �0.019333

87.600000 87.402344 �2.256347 87.591729 �0.094418

148.20000 148.43750 1.602564 148.21209 0.081559

n ¼ 2 0 10.300000 10.253906 �4.475146 10.299994 �0.000583

40.5000000 40.527344 0.675160 40.500001 0.000025

87.600000 87.402344 �2.256347 87.599673 �0.003733

148.20000 148.43750 1.602564 148.20046 0.003097

20 10.300000 10.253906 �4.475146 10.298934 �0.103495

40.500000 40.527344 0.675160 40.499227 �0.019086

87.600000 87.402344 �2.256347 87.599240 �0.008676

148.20000 148.43750 1.602564 148.19864 �0.009184

n ¼ 5 0 10.300000 10.253906 �4.475146 10.299999 �0.000097

40.500000 40.527344 0.675160 40.500000 0.000000

87.600000 87.402344 �2.256347 87.599995 �0.000057

148.20000 148.43750 1.602564 148.20000 0.000047

20 10.300000 10.253906 �4.475146 10.298970 �0.100000

40.500000 40.527344 0.675160 40.499235 �0.018889

87.600000 87.402344 �2.256347 87.599467 �0.006084

148.20000 148.43750 1.602564 148.19864 �0.009150

n ¼ 15 0 10.300000 10.253906 �4.475146 10.300000 0.000000

40.500000 40.527344 0.675160 40.500000 0.000000

87.600000 87.402344 �2.256347 87.600000 0.000000

148.20000 148.43750 1.602564 148.20000 0.000000

20 10.300000 10.253906 �4.475146 10.298565 �0.139320

40.500000 40.527344 0.675160 40.498712 �0.031802

87.600000 87.402344 �2.256347 87.599342 �0.007511

148.20000 148.43750 1.602564 148.19813 �0.012611

Note: % denotes per 100, % denotes per 1000.
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calculated by ABAQUS as follows: firstly, the natural frequencies of the intact beam with the traversing
auxiliary mass are computed by performing eigenvalue extraction; secondly, dynamic time history responses of
the simply supported beam with mass are obtained by using modal superposition. In the second step, the input
force, shown in Fig. 6(a), is applied to the intact beam at the position of 7/24th of its length from one end. The
input force used was a chirp signal generated by the Matlab programming software. The frequency of the
signal starts at 0Hz and ends at 250Hz. The chirp signal has a duration of 2.048 s and a peak-amplitude of
10N. The response data, which is shown in Fig. 6(b), is obtained at the position of 13/24th of the length of the
intact beam. Then the time-domain dynamic response data computed by the ABAQUS FEA software was
transformed into the frequency domain using the FFT and SCCM procedures. Thus the natural frequencies of
the simply supported beam with an auxiliary mass can be obtained.

Fig. 7 shows the frequency spectrum obtained using the FFT procedure. It is seen that the natural or modal
frequencies of the intact beam change if the auxiliary mass is located at different positions along the length of
the beam. When the mass is located at the end of the beam (i.e. lm ¼ 0), Fig. 7 and Table 3 show that the
natural frequencies are identical to those of an intact beam because the mass has no dynamic effect. When the
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Fig. 6. (a) Force input data and (b) response time data of an intact simply supported beam with an auxiliary mass.

Fig. 7. Frequency spectrum of time history of an intact aluminium beam (z ¼ 0.02) with an auxiliary mass (m ¼ 4 kg) located at different

positions (lm) of the beam, (a) linear vertical coordinate, and (b) logarithmic vertical coordinate: (——) lm ¼ 0m, ( ) lm ¼ 0.6m, and

( ) lm ¼ 1.2m.

Table 3

Natural frequencies of intact beam with and without auxiliary mass

Auxiliary mass (kg) Location, lm (m) Frequency (Hz)

First mode Second mode Third mode Fourth mode

0 – 10.2539 40.0390 89.8438 159.6680

4 0 10.2539 40.0390 89.8438 159.6680

4 0.6 8.7890 33.6914 83.9844 159.6680

4 1.2 8.3007 40.0390 77.6367 159.6680

S. Zhong et al. / Journal of Sound and Vibration 311 (2008) 1075–10991088
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mass is located at the centre of the beam (i.e. lm ¼ 1.2m), Fig. 7 and Table 3 show that the natural frequencies
of the odd modes (modes 1 and 3) are less than those of the intact beam without auxiliary mass or with the
mass located at the end of the beam (lm ¼ 0). But the natural frequencies of the even modes (modes 2 and 4)
are practically the same as those of the intact beam without auxiliary mass or with auxiliary mass at lm ¼ 0.
This difference is due to the fact that the centre of the beam is an antinodal position for the odd modes but a
nodal position for the even modes.

Thus, when the mass is located at the centre, the dynamics of the odd modes of the beam are significantly
affected whereas the dynamics of the even modes are hardly affected. But when the mass is located at
lm ¼ 0.6m, which is 1/4 length of the beam, only modes which are multiples of 4 will have nodes at the same
location. The frequencies of these modes will be least affected. But the frequencies of all other modes will be
significantly affected as seen in Fig. 7 and Table 3. Thus, from these results, it is very clear that the natural
frequencies of a beam with an auxiliary mass are significantly affected by the location of the mass. Therefore,
the auxiliary mass can be used to probe the dynamic characteristics of the beam by traversing the mass from
one end of the beam to the other. The accuracy of the frequency is the major factor when the frequency
change is used for crack indication. But as stated previously, the frequency estimates obtained from the
FFT procedure are not very accurate. The use of the SCCM approach provides more accurate estimates
of frequencies.

In order to evaluate the effect of damping ratios on the estimate of the resonance frequencies of beam-like
structures, beams with different damping ratios were also investigated. Fig. 8 shows the frequency spectrum of
response data of an intact beam with different damping ratios. It is seen that the peak response amplitudes
reduce as the damping is increased. But the change in magnitude of the amplitude is greater than the change in
magnitude of the damping. For example, when the damping ratio z increases from 0.02 to 0.05, that is an
increase by a factor of 2.5, the amplitude of mode 3 is reduced by a factor of 8. The effect of damping on the
resonance frequencies is discussed separately in Section 4.4.

The three sets of natural frequencies curves for mode 1 computed for the three damping ratios (z ¼ 0.02,
0.05, and 0.10) using FE eigenvalue extraction, FFT of response data and SCCM of response data, are plotted
against the corresponding axial locations of the auxiliary mass as shown in Fig. 9(a-1)–(a-3), respectively.
As can be seen from these figures, the precision of frequencies calculated by FFT of response data of the
beam is low, whereas, the frequencies calculated by SCCM of FFT of response data are very accurate.
The corresponding relative errors between the frequencies calculated by SCCM and FFT are shown in
Fig. 9(b-1)–(b-3) for the three different damping ratios (z ¼ 0.02, 0.05, and 0.10). From Fig. 9(b-1)–(b-3), it
seen that the relative error of frequencies calculated by SCCM increases when the damping ratio increases.
Fig. 8. Frequency spectrum of time history of an intact aluminium beam with an auxiliary mass (m ¼ 4 kg) located at position of

lm ¼ 0.9m of the beam for varying damping ratios, (a) linear vertical coordinate, and (b) logarithmic vertical coordinate: (——) z ¼ 0.02,

( ) z ¼ 0.05 and ( ) z ¼ 0.10.
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Fig. 9. (a) First natural frequency curves and (b) relative errors of frequency using FEM, SCCM and FFT for intact aluminium beams, for

varying damping ratios z and with an auxiliary mass (m ¼ 4 kg) spatial probing using different analysis methods: z ¼ 0.02 for (a-1) and

(b-1); z ¼ 0.05 for (a-2) and (b-2); z ¼ 0.10 for (a-3) and (b-3); (——) frequency from FEM, ( ) frequency from SCCM of FFT data,

and ( ) frequency from FFT of response history.
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However, the relative errors are less than 0.12% even if the beam has a high level of damping (z ¼ 0.10). The
relative errors of frequencies calculated by FFT are shown in Fig. 9(b-1)–(b-3), and are seen to be greater than
those calculated by SCCM. Therefore, SCCM can give a highly accurate estimate of the natural frequencies of
beam-like structures by only using the response time history without the need to measure or determine the
input excitation signal.

4. Damage detection in beam-like structures based on using modal frequencies derived by SCCM

It is difficult and in most cases impossible to detect and locate damage from purely a plot of the modal
frequencies versus axial location of the auxiliary mass. To enhance the data, derivatives of the frequency
curves are used. This method, in fact, is an application in structural damage detection of the derivatives of
eigenvalues with respect to design parameters (or updating parameters). In this paper, the updating parameter
of a beam with an auxiliary mass is the location of the mass along the beam. This kind of updating parameter
cannot be found in any literature that have been published. The derivatives of eigenvalues (frequencies) with
respect to the locations of an auxiliary mass along a beam have been investigated in this section for beam-like
structure damage detection.

4.1. Illustration of proposed approach

The approach proposed in this paper for damage detection in beam-like structures is the use of the
derivatives of the modal frequency curves. This is illustrated via a numerical example based on a cracked beam
of dimensions 2400� 100� 25mm3 and whose crack depth, crack location and damping ratio are,
respectively, hc ¼ 5mm, lc ¼ 0.4m and z ¼ 0.02. The response time histories of the cracked beam were
computed using the ABAQUS FEA programme. These response time histories were computed at spatial
intervals of 50mm along the length of the beam. The SCCM of the FFT of these response histories are
computed and plotted against the axial locations of the mass.

Fig. 10(a) is the first natural frequency curve corrected by SCCM. From this figure, the first natural
frequency curve of the cracked beam with an auxiliary mass is apparently a single smooth curve. Actually, due
to the crack effect, the curve exhibits hidden local peaks or discontinuities in the region of damage which are
not visible in Fig. 10(a). A very simple method to detect these, which is based on the use of the derivatives of
the frequency curve, is proposed. The derivatives are expected to reveal the hidden aspect of the data. In the
present work, the first three derivatives of the frequency curve, namely ðdnf =dln

mÞ; n ¼ 1; 2; 3, are used to
produce data for damage detection of beam-like structure. Fig. 10(b)–(d) show the first three derivatives of the
first natural frequency curve corrected by SCCM. It is seen that the second and third derivatives provide a
progressively better indication of the presence of a crack at 400mm from the left end of the beam because the
derivative curves exhibit significant discontinuity at this position.

To further verify the efficiency and practicability of the proposed method using the derivatives of the
frequency curve, the effects of crack depth, auxiliary mass, damping ratio and random noise were also
investigated. The findings are discussed in the following sub-sections.

4.2. Effects of crack depth

Fig. 11(a-1), (b-1), (c-1) and (d-1) are, respectively, the first natural frequency curve and the first, second and
third derivatives of the frequency curve of cracked beams with damping ratio of z ¼ 0.02, whose crack
location is lc ¼ 0.4m and whose crack depths are 2.5, 5, 7.5, 10 and 12.5mm. Also, a mass of m ¼ 4 kg is
traversed along the beam from one end to the other. Fig. 11(a-2)–(d-2) show the corresponding zoom curves of
Fig. 11(a-1)–(d-1) around the crack location. From these figures, it is seen that the first three derivatives
provide a progressively better indication of the presence of a crack at 0.4m from the left end of the beam. For
a deep crack (e.g. hc ¼ 10 or 12.5mm), crack detection can be carried out from the first derivative of the
natural frequency curve of the beam because there is an obvious discontinuity in the first derivative curve at
the crack region. On the other hand, the second and third derivatives enable progressively smaller cracks to be
identified. Also, from all the curves, one conclusion can be drawn that the deeper the crack, the greater the
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Fig. 10. Corrected first natural frequency curve by SCCM and its derivative for a cracked aluminium beam (lc ¼ 0.4m, hc ¼ 5mm,

z ¼ 0.02) with an auxiliary mass (m ¼ 4 kg) spatial probing: (a) first natural frequency curve; (b) first derivative; (c) second derivative; and

(d) third derivative.
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magnitude of the peak value of the derivatives of the natural frequency curve. That is, a more obvious crack
indication is given.
4.3. Effects of auxiliary mass

In this section, the effects of auxiliary mass on the frequency curves are investigated. Auxiliary masses of
magnitudes m ¼ 1, 2, 4, 6 and 8 kg are traversed from one end of the cracked beam to the other. The beam has
a damping ratio of x ¼ 0.02, and a crack of depth hc ¼ 5mm located at lc ¼ 0.4m. Fig. 12(a)–(d) are,
respectively, the first natural frequency curve and the first, second and third derivatives of the frequency curve
of the cracked beam. Fig. 12(a) shows that the natural frequencies decrease when the auxiliary masses are
traversed along the beam and that the natural frequencies decrease in magnitude as the magnitude of the
auxiliary mass increases. Similarly, it can be seen from Fig. 12(a) to (d) that the first three derivatives provide a
progressively better indication of the presence of a crack located at 0.4m. Also, the derivative of the
frequencies give better crack indication if the auxiliary mass increases in magnitude.
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Fig. 11. Corrected first natural frequency curve by SCCM and its derivative for a cracked aluminium beam (lc ¼ 0.4m, x ¼ 0.02) with an

auxiliary mass (m ¼ 4 kg) and the corresponding zoom curves for varying crack depths: (a-1) first natural frequency curve, (b-1) first

derivative, (c-1) second derivative, and (d-1) third derivative; (a-2)–(d-2) are the zoom curves of (a-1)–(d-1) around the crack location;

(——) hc ¼ 0mm (intact beam), ( ) hc ¼ 2.5mm, ( ) hc ¼ 5mm, ( ) hc ¼ 7.5mm, ( ) hc ¼ 10mm, and ( )

hc ¼ 12.5mm.
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Fig. 12. Corrected first natural frequency curve by SCCM and its derivative of a cracked aluminium beam (lc ¼ 0.4m, hc ¼ 5mm,

x ¼ 0.02) with different auxiliary masses: (a) first natural frequency curve; (b) first derivative; (c) second derivative; and (d) third

derivative; ( ) m ¼ 1 kg, ( ) m ¼ 2 kg, ( ) m ¼ 4 kg, ( ) m ¼ 6 kg, and (——) m ¼ 8 kg.
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4.4. Effects of damping ratios

Three different damping ratios of the cracked beam, that is x ¼ 0.01, 0.02, and 0.05, were investigated.
Fig. 13(a)–(d) show the first natural frequency curve and the first, second and third derivative of the frequency
curve, respectively, for the cracked beam whose crack location and crack depth are lc ¼ 0.4m and
hc ¼ 7.5mm. Similar to the result given above, the first three derivatives provide a progressively better
indication of the presence of a crack at 0.4m from the left end of the beam. However, ‘noise’ effects due to the
difference approximation error [34] begin to be magnified at the third derivatives of the natural frequency
curve of the beam with the damping ratio of x ¼ 0.05. Therefore, in real applications, it is not advantageous to
go beyond the third derivatives of the natural frequency curve.

The relationship between the crack indicator, using the third derivative of the natural frequency curve,
damping ratios and crack depths were investigated. Two cracked beams with cracks at lc ¼ 0.4m and whose
crack depths were hc ¼ 5mm (B1) and hc ¼ 12.5mm (B2) were analysed. Four different damping ratios,
namely x ¼ 0.01, 0.02, 0.05, and 0.10 are used. Fig. 14(a) and (b) show the third derivatives of corrected first
natural frequency curves of the beam with a 5mm deep crack and with four different damping ratios from 0.01



ARTICLE IN PRESS

Fig. 13. Corrected first natural frequency curve by SCCM and its derivative of a cracked aluminium beam (lc ¼ 0.4m, hc ¼ 7.5mm)

with an auxiliary mass (m ¼ 6 kg): (a) first natural frequency curve; (b) first derivative; (c) second derivative; and (d) third derivative:

(——) z ¼ 0.01, ( ) z ¼ 0.02, and ( ) z ¼ 0.05.
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to 0.1. It can be seen that when the damping ratio is small (i.e. 0.01 and 0.02), the third derivative of the
natural frequency curve provide clear indication of the presence of a crack at 0.4m; when the damping ratio is
large (i.e. 0.05 and 0.10), it is hard to obtain useful information from the third derivative of the natural
frequency curve. However, for the beam with a 12.5 deep crack, when damping ratios are 0.01, 0.02 and 0.05,
the third derivatives of the natural frequency curves provide clear information for crack identification and
location. But when the damping ratio is 0.10, the crack cannot be clearly identified from the third derivative of
the frequency curve. Therefore, one conclusion can be drawn that the deeper the crack, the more obvious the
crack indicator using the third derivatives of the natural frequency curve. Also, when the damping ratio
increases, the crack effect decreases such that the third derivatives of the natural frequency curve does not
provide a clear indication of the crack.

At first sight, the results shown in Figs. 13 and 14 that the ‘noise’ associated with the third derivative
increases as the damping increases look anomalous. However, a careful consideration shows that it is a correct
behaviour. When the damping increases, the peak response of the structure at its resonance decreases.
Therefore, the effects of noise on the peak response amplitude increase. Consequently, the ‘noise’ associated
with the frequency estimates increases.
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Fig. 14. The third derivative of the corrected first natural frequency curve of a cracked aluminium beam B1 (lc ¼ 0.4m, hc ¼ 5mm) and

another cracked beam B2 (lc ¼ 0.4m, hc ¼ 12.5mm) with an auxiliary mass (m ¼ 6 kg): (a) and (b) third derivative for B1, (c) and (d) third

derivative for B2: (——) z ¼ 0.01, ( ) z ¼ 0.02, ( ) z ¼ 0.05, and ( ) z ¼ 0.10.
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4.5. Effects of noise

The above results are attributed to the fact that the analysed data are obtained from theoretical finite
element computations of the response and hence contain no experimental noise. For real cases, experimental
noise is expected to corrupt the response data and, hence, the natural frequencies of beam-like structures. In
this section, response data with an associated normally distributed random noise was also studied. Normally
distributed random noise of magnitudes 2% and 5% of root-mean-square (rms) of response data are added
to the response data of beam-like structures. The natural frequencies were calculated as follows. Firstly,
32 segments of 2048-point continuous noisy signals were obtained. Secondly, average power spectrum was
calculated by the FFT of the 32 signal segments. Then, the frequencies were calculated by SCCM of the result
of the average power spectrum.

Fig. 15(a)–(d) are, respectively, the first natural frequency curve and the first, second and third derivatives of
the frequency curve of the cracked beam whose crack location and crack depth are lc ¼ 0.4m and
hc ¼ 7.5mm, respectively. Also, the beam was subjected to a mass of m ¼ 4 kg traversed along the beam from
one end to the other. Fig. 15(a) and (b) show that the natural frequencies and the first derivative, calculated
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Fig. 15. First corrected noisy natural frequency curve by SCCM and its derivative of a cracked aluminium beam (lc ¼ 0.4m, hc ¼ 7.5mm,

z ¼ 0.02) with an auxiliary mass (m ¼ 4 kg): (a) first natural frequency curve; (b) first derivative; (c) second derivative; and (d) third

derivative; (——) no noise, ( ) 2% noise, and ( ) 5% noise.
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using SCCM from the response data without and with added random noise, are almost the same. This shows
that the SCCM provides accurate frequency estimates even in the presence of noise. That is, the SCCM has a
high anti-noise ability. The second derivatives of the frequency curves are smooth curves, from which crack
detection can be made using the obvious discontinuity manifested at the crack region. However, the third
derivative of the natural frequency curves of the beam is contaminated by the added noise. The noise
associated with the third derivative curve for the case of 5% added noise is larger than that of 2%.
Nevertheless, the second and third derivatives provide a progressively better indication of the presence of a
crack at 0.4m from the left end of the beam. However, it is not advantageous to go beyond the third
derivatives of the natural frequency curve.

5. Concluding remarks

This paper proposes a new approach based on auxiliary mass spatial probing using the spectral centre
correction method (SCCM), to provide a simple solution for damage detection by just using the response time
history of beam-like structure. The natural frequencies of a damaged beam with a traversing auxiliary mass
change due to change in flexibility and inertia of the beam as the auxiliary mass is traversed along the beam.
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Therefore the auxiliary mass can enhance the effects of the crack on the dynamics of the beam and, therefore,
facilitate the identification and location of damage in the beam. That is, the auxiliary mass can be used to
probe the dynamic characteristics of the beam by traversing the mass from one end of the beam to the other.

However, it is impossible to obtain accurate modal frequencies by the direct operation of the fast Fourier
transform (FFT) procedure on the response data of the structure because the frequency spectrum can be only
calculated for sampling limited time data which results in the well-known leakage effect. SCCM is identical to
the energy centrobaric correction method (ECCM) which is a practical and effective method to overcome the
shortcoming of the FFT in order to provide highly accurate estimates of frequency.

From the modal responses of damaged simply supported beams with auxiliary mass computed using the
finite element method (FEM), graphical plots of the natural frequencies calculated by SCCM versus axial
location of auxiliary mass were obtained. It was shown that it is difficult to locate a crack directly from these
natural frequency curves. Therefore, a practical method, which is based on the derivatives of natural frequency
curves was proposed. It was shown that the method enables clear and unambiguous identification and location
of cracks in a beam-like structure. The efficiency and practicability of the proposed method was illustrated via
numerical simulation.

For real cases, however, experimental noise is expected to corrupt the response data and, hence, the natural
frequencies of beam-like structures. Consequently, the effect of noise was also investigated. In real
applications, it is suggested that average power spectrum be used in order to reduce the noise effect. Also, the
effects of crack depth, auxiliary mass and damping ratios were investigated. The results show that the deeper
the crack, the greater the magnitude of the peak value of the derivative of the natural frequency curve; the
derivatives of the natural frequency curves give better crack indication if the auxiliary mass increases in
magnitude; also, the crack effect decreases when the damping ratio increases. From the simulated results, the
efficiency and robustness of the proposed method has been demonstrated. Also, the proposed method has low
computational cost and high precision and it is, therefore, recommended for real applications.
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